CHAPTER 6
REFERENCE MATERIAL

Background material

The Coevolving Organization described how to bring a business to an optimal degree
of decoupling on the order—chaos boundary, but stopping just short of the boundary
to imbue some measure of stability. However, HOT has — as described earlier in the
present text — allowed this optimal point to be pushed further towards the chaotic
regime provided we know the likelihood of initiating chaotic events: this enables us
to limit (buffer) their effect on the rest of the business. But it is also possible under
some circumstances to operate within the chaotic regime and to control what happens.

A chaotic system typically contains one or more fuzzy (imprecisely defined)
areas — ‘strange attractors’ — to which movement gravitates. Irrespective of starting
point (i.e. whatever the initial conditions), subsequent paths are inexorably drawn in
to an attractor, although they may well cycle around the attractor following some
convoluted route for ever. Some paths may be simple periodic ones like the moon
going around the earth, although less stable; others may be extremely complex where
the system loops through a sequence of different orbits before repeating the whole
series; these are called ‘high-period’ orbits. Methods for controlling chaos are based
on one or both of a couple of observations by Grebogi et al (reference 4): that most
chaotic attractors contain an infinite number of unstable periodic orbits, and that each
such orbit contains a series of saddle points. The relevant feature of a saddle point is
that on one axis — forwards and backwards on a real saddle — movement is stable (the
rider sinks towards the centre of the saddle), while on the other axis — side to side on
a real saddle — movement is unstable (the rider falls off!). Ott et al (reference 9) made
use of the existence of saddles and their stable/unstable behaviour to optimize the
behaviour of the system by firstly pinpointing where a suboptimal unstable trajectory
(associated with some particular start point) approached a more optimal path. Then,
in the area where the paths ran adjacent to (or crossed) each other, they proposed
nudging the system to shift from the undesirable path to the better path. This made
the dynamics of the system work in their favour because a small perturbation in the
right direction on to the stable part of a saddle then allows the natural stabilizing
behaviour of the front-back axis of the saddle to take over and complete the job. The
process, subsequently known as the OGY method, does not correct continually but
instead applies an intermittent correction to some system-wide control variable (i.e.
adjustment knob) which controls the path of the trajectory as it cycles around its
attractor. A correction is made once per cycle, and the size of the correction is
calculated such that the next time the trajectory comes around in its cycle, it hits the
stable area of the saddle and thus of its own volition is dragged into the desired
optimal orbit. More precisely, since adjusting the control variable adjusts the entire
system and not just the current trajectory, the effect moves al/ the possible orbits a
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small amount (by analogy: instead of stepping sideways on a carpet to stand on some
better spot, one moves the whole carpet instead — which affects everyone standing on
the carpet...). When the path of the system is shifted to the optimal orbit in this way,
subsequent unpredictable external buffeting may make the system change course off
its (new) optimal orbit. In this case, nudges can be reapplied to keep the system on
course. OGY has a couple of disadvantages, however. The first is that because
corrections are only made intermittently rather than continually, these corrections are
inevitably jerky, albeit small, and between one correction and the next the trajectory
might have veered off course due to noise. The second is that calculating the
correction needs to be done very quickly in order to apply it, and this may not be
possible if the system itself changes quickly (has high frequency oscillations, for
example).

An alternative (the delayed feedback control or ‘DFC’ technique) based on
OGY and due to Pyragas (references 11 and 12) gets around both these problems.
Pyragas proposed applying a correction based on the difference between the value of
some system variable now and its previous value. The delay between the
measurement of the ‘now’ value and the immediately previous value is set to be the
orbital period of the desired path. The correction thus pushes the system to have the
same orbital period as the desired path. Two major differences between the Pyragas
approach method and OGY is that the Pyragas correction adjusts only the current
trajectory and not the whole system, and that corrections are applied continuously
whereas OGY applies corrections not just once per cycle but also ‘in advance’ (OGY
has to predict where the current trajectory will be next time around and correct
accordingly). A cross between OGY and DFC also exists (see Bielawski et al
reference 2): it uses OGY’s once-per-cycle adjustment but DFC’s delays to calculate
the adjustment.

There are several versions of the OGY and Pyragas methods, but most apply a
corrective adjustment whose size is roughly proportional the gap between the current
path and the desired path provided the gap is not too large. Since large adjustments
must be avoided since they may perturb the already chaotic system into new and
uncharted territory, either the adjustment is bounded (is within a ‘window’ with upper
and lower limits) or a small adjustment is repeated regularly until it has the required
effect (see OPF below). Some methods (see e.g. Arecchi and Boccaletti reference 1)
also measure the rate at which the trajectory is diverging from the desired UPO (i.e.
the trend as well as the current difference) and increase the adjustment further if the
trend is particularly adverse or reduce it if the system appears to be responding well.

Socolar et al (reference 16) significantly improved on the basic Pyragas method
using a correction which was based not just on the difference between the current and
immediately preceding value but also on a weighted sum of differences going back in
time (‘last minus last-but-one; last-but-one minus last-but-two... etc). Socolar’s
improvement is known variously as the extended DFC (‘EDFC’) or the extended
time-delay auto-synchronization (‘ETDAS’) technique.

One problem with all of these techniques — but especially OGY — is that the
initial suboptimal path needs to approach sufficiently near to the optimal one for a
small adjustment to be effective, and so refinements have been developed which
allow a succession of jumps from suboptimal path, via a better path, then via an even



better path to the optimal path, each triggered by a small adjustment. The resulting
path is thus built up from sections of larger paths and looks like (and is called) a
‘bush’. Shinbrot (references 13 and 14) first described this ‘targeting’ process in
detail, and it is of particular value when the chaotic system has more than one
attractor and we want to persuade paths from the majority of starting points to go to
just one of the attractors.

A second problem is identification of the desired periodic orbit. This is usually
done by analysing time series data with methods proposed by Lathrop and Kostelich
(reference 8) and by So et al (reference 15). The idea behind both is that, since we
may well not know what the attractor looks like, we firstly reconstruct it using a
series of measurements of some chosen system variable (a process called ‘delay co-
ordinate embedding’' first described in this context by Packard et al — see reference
10) and then identify UPOs, their orbital periods and saddle points either graphically
or by further analysing the data.

A third difficulty with OGY in particular arises when the orbits are ‘high
period’ (multi-loop) rather than simple ones, since a correction calculated at the start
of each sequence of loops may be hopelessly inaccurate by the time all the loops have
been traversed and the sequence is ready to be repeated. Hunt (reference 7) proposed
measuring the error, calculating an adjustment proportional to the error (except when
the error was too large, in which case no attempt at adjustment was made), and
making the adjustment intermittently’ — hence the technique’s name of ‘occasional
proportional feedback’ or OPF. Because the adjustment can be relatively large (larger
than, for example, used by OGY), OPF can create periodic orbits where none
previously existed.

These methods for the control of chaotic systems have been applied in practice to
laboratory and industrial systems and to unmanned spaceflight. Boccaletti et al
(reference 3) is recommended as a comprehensive (95 page) up-to-date review of the
various methods and their implementation. Use of chaos control within a business
organization would be feasible in principle, but it presupposes that the organization is
already chaotic and remains chaotic — these methods do not make a chaotic system
unchaotic, merely better performing, less unstable and more predictable. Simple
models of business competition do, however, exist (see for example Holyst references
5 and 6).

! this remarkable and counter-intuitive result — that an attractor can be reconstructed using just a series of
measurements of one variable — is a consequence of the Takens-Whitney embedding theorem, named
after Dutch mathematician Floris Takens and US mathematician Hassler Whitney. The attractor thus
reconstructed may not look exactly like the original but they can be ‘morphed’ from one to the other and
both have the same dynamic properties

2 Hunt’s system was an electronic circuit rather than a computer model. The adjustment was continuous
but for a short time, like pushing then briefly holding in a bell-push.
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CHAPTER 7
QUESTIONS AND ANSWERS

Q: I think I understand the ‘controlled percolation’ forest fire formulation of
HOT, but cannot see the connection between this and the probability — loss —
resource (PLR) version. Does PLR occur in real-life?

A: The Duke of Wellington® was outnumbered when defending against the
French at Torres Vedras (near Lisbon) during the Iberian Peninsular War. He had
two conflicting constraints: winning while minimizing casualties (loss) and he
was, with some restrictions, able to place his troops such that the probability of
casualties overall was minimized. Some soldiers would be in advanced positions
most likely to be attacked but Wellington ensured that these were in small groups
heavily protected by gun emplacements, palisades and earthworks that were built
at considerable cost by several thousand Portuguese labourers. At the other
extreme, he spent little on protecting his reserves that were further from the firing
line. Given this strategy:

« a ‘normal’ HOT formulation would be: win whilst minimising the cost of
casualties plus the cost of flank protection (more small groups = more
flanks to protect). The difficulty is that turning either casualties into money
or the cost of flank protection into equivalent ‘avoided casualties’ is
subjective.

«  the PLR HOT formulation would be: win whilst minimising the cost of
casualties subject to a /imit on the cost of flank protection. His tactical
problem was this: with a fixed-sized war chest for spending on defences,
where should he spend the money on building these defences such that his
overall casualties were minimized, given his assessment on the likely
casualties in each area. In this formulation, there is no need to put a price
on casualties.

The ‘normal’ formulation is thus:

= optimize yield where the yield (value) is offset by the cost of flank
protection which insulates one area from another

whereas the PLR formulation is:
» optimize yield subject to a limit on the total cost of flank protection
The first assumes no overt limit on the cost of flank protection, but assigns a cost

such that the minimization process itself puts a brake on the amount of flank
protection used. It makes a compromise between the value of the yield and the

3 1769-1852; the UK’s best field commander since the (1% Duke of Marlborough. Although at the
time not yet a Duke, he was on fast track promotion during the war as progressively Sir Arthur
Wellesley; Baron Douro; then Viscount, Earl and lastly Marquis of Wellington.



cost of protection. The second formulation does not assign any cost per unit
length of flank protection, but limits the total amount that can be employed. From
the above example, Wellington had a fixed army; his latitude was how to deploy
them in groups geographically. More small groups limit the overall impact of a
sudden and successful assault on his troops: some small regiments may be totally
wiped out but, since he had deployed his troops such that the ones most at risk
were protected by the best defences, Wellington had done his best”.

Q: In The Coevolving Organization, you described the order—chaos boundary as
the farthest point it was sensible to push the decentralization of decisions without
all hell being let loose. You have now shown how HOT would allow me to
reduce the coupling between parts of my organization even further (to the ‘chaos’
side of the order — chaos boundary) provided I can identify the risks of adverse
behaviours in advance. The result will. I hope, be even better responsiveness
while limiting the effect of any adverse decisions on the rest of the business.
Remember Barings Bank (RIP)? If Barings had run its Singapore branch with a
separate individual as head of settlement operations to control the exposure of
Nick Leeson’s trading, the branch would have remained under control and
solvent. If, however, it were run with Leeson in both roles (as happened) but as an
entirely separate company at arms length, the Singapore branch would have gone
catastrophically bust but Barings — legally buffered from the exposure — would
have survived (financially; but its good name would have been forever
blackened). I accept that the impact of unanticipated risks such a Leeson’s rogue
trading is likely to be greater than if my organization stopped decentralizing when
it hit the order — chaos boundary, and that I have consciously traded off greater
fragility to the unexpected in order to give me greater effectiveness as a result of
further decentralization. But responsiveness is everything in my business, and [
would now like to decentralize decisions even further. Is there any way a business
which deliberately operates in the chaotic regime can be controlled?

A: Possibly — it depends on the nature of the chaotic behaviour. Simple examples
are difficult to come by, but you can get some idea of what is involved from
observing the behaviour of things designed to be unstable. For example, fighter
aircraft such as the Eurofighter Typhoon or the F-22 are engineered from the
outset be unstable. This gives them great responsiveness and manoeuvrability but
they also need complex control systems to enable any mortal to fly them. Formula
1 racing cars are not allowed this degree of ‘fly by wire’ electronic assistance, but
they are still far less stable than the typical family saloon; they are exceptionally
responsive and can change direction in an instant, but are difficult to drive. To
construct our example of the control of (near-)chaotic behaviour, we need to
couple a modern marginally-stable F1 racing car with one of the very few F1
drivers® who, during practice, could repeatedly drive same optimum path around
the circuit. Assume that, unlike a current F1 car, the car can also be driven
automatically — driverless — with the car’s electronics remembering (and being

* he won...his defence and logistics were so good that the French under Marshal Massena, with
very tenuous supply lines, themselves starved and retreated

5 Argentina’s Juan Manuel Fangio (1911 — 1995) and Scottish driver Jim Clark (1936 — 1968) were
perhaps the greatest exponents of this ‘driving on rails’



QUESTIONS AND ANSWERS

able to reproduce — a bit like a pianola) the exact sequence of accelerator, brake,
gear-change and steering-wheel movements used by the driver in covering a
perfect lap. Now let the car loose from the starting grid to cover a lap. As it
progresses around the circuit, it will follow the built-in programme: accelerate
immediately, brake after seventeen seconds, turn the steering wheel a quarter turn
after nineteen seconds, and so on. When the car completes a circuit and crosses
the start line again, it will inevitably not be in quite the same position on the track
as when it started off: it may, for example, be a metre to the right-hand side of the
optimum path. Small gusts of wind, tyre wear and a thousand-and-one other
things will deflect it slightly from its optimal course.

To remedy this, we could do one of two things:

- either install an ultra-accurate GPS-like system to record exactly where on the
track each acceleration, braking, gear-change or steering wheel movement should
happen, and then, during the driverless laps, make continual minor corrections to
speed and position so that the car follows the optimum path as exactly as possible

- or correct the speed and position just once — each time it crosses the start line

In either case, because the car is light and only marginally stable, changes of
direction or speed need a mere touch of the steering wheel or accelerator.

So much for the example, but what about control of chaotic systems? If the
movements in a chaotic system have some form of repetition, i.e. they are
periodic (like the F1 car lapping the track), it is likely also that the instability can
be made to work for us: a nudge in the right direction at the right time and the
system itself will take over and automatically guide the movement to where we
would like it to go without further effort on our part. A periodic chaotic system
can thus be controlled in two ways: a nudge to the controls once each time around
(the OGY method named after US physicists Ed Ott and Jim Yorke® and Brazilian
physicist Celso Grebogi) or with a continuous correction — the Pyragas method
named after Lithuanian physicist Kestutis Pyragas.

S passing, it appears that Yorke (with colleague TY Li) may have been the first to use the word
‘chaos’ in its mathematical sense
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